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Abstract

Human operators are increasingly working with robots in
many safety-critical applications. Operators in such domains
have to make decisions under uncertainty due to incomplete
information and time pressure. A common type of such deci-
sion making involves making a choice between two options.
Research in joint decision making in human-human dyads
has shown that two heads are better than one: joint decisions
can lead to better performance compared to the best indi-
vidual performing alone. Critically, joint decisions are bet-
ter only when the individuals are allowed to exchange con-
fidence estimates-suggesting a key role for metacognition in
joint decision-making. In this paper, we propose a research
plan to investigate the role of metacognition in joint decision-
making, and pose broad questions as well as specific hypothe-
ses pertaining to joint decisions in robot tasks.

Introduction
Human operators are increasingly working with robots
in domains such as nuclear decommissioning (Nagatani
et al. 2013; Budd et al. 2020; Chiou et al. 2022), inspec-
tion (Hawes et al. 2017; Chiou, Hawes, and Stolkin 2021;
Budd et al. 2023), and search and rescue (Casper and Mur-
phy 2003; Dole et al. 2015). Operators in such domains are
often working under time pressure, with incomplete infor-
mation and communication latencies, such that they often
have to make decisions under uncertainty.

An important type of such decision making under uncer-
tainty is choosing between options. For example, a human
operator may choose between direct teleoperation or au-
tonomous robot operation (Lee, Mehmood, and Ryu 2016),
or may have to select which out of a fleet of robots to
assist in the case of robot failure (Ji, Dong, and Driggs-
Campbell 2022). Automated agents can also be tasked with
making choices. For example, an automated agent may have
to decide between operating autonomously or querying the
human operator for a demonstration (Rigter, Lacerda, and
Hawes 2020), or a decision making agent may select be-
tween giving control to the human operator or an automated
controller (Costen et al. 2022).

While such implementations often involve decision-
making by a single agent (usually the human operator), an
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open question is whether two decision makers instead of
one may yield better decisions than either individual deci-
sion maker alone. The two decision makers could be both
human (Boschetti et al. 2021; Szczurek et al. 2023), or a hu-
man with an automated decision-support system.

Joint decision-making has been studied in human-human
dyads (Bahrami et al. 2010; Koriat 2012; Bahrami et al.
2012a; Bang et al. 2014). Specifically, work in joint
decision-making in visual-perception tasks has revealed in-
teresting results. Bahrami et al. found that under certain con-
ditions, team performance was better than either individual,
provided the participants were allowed to exchange confi-
dence estimates in their decisions. This raises the question
whether the exchange of confidence estimates between two
decision makers can also elevate team performance beyond
either individual decision maker alone, in tasks involving
human operators working with robots.

The importance of confidence estimation in joint
decision-making suggests a key role for metacogni-
tion (Dunlosky and Metcalfe 2008), the ability to assess
one’s own task performance. Accurate metacognition is
thought to optimise learning strategies, for instance, in ed-
ucation by contributing to efficient cognitive offloading, or
protecting against cognitive biases (Fleming 2021). There-
fore, understanding the role of metacognition is a key goal
for decision-making in human-robot collaboration.

We pose the following questions:

1. It has been shown that humans show metacognitive sensi-
tivity when doing visual-perception tasks, i.e., their con-
fidence estimates track task success despite the absence
of feedback. Do humans show similar metacognitive
sensitivity when working with robots in action-oriented
tasks such as selecting between robot controllers?

2. Is human metacognitive sensitivity in visual-perception
tasks a good predictor of their metacognitive sensitivity
in tasks involving robots?

3. Are two heads better than one even in the robotics do-
main, i.e., does a pair of human decision-makers perform
better than either of the single decision makers, when
they share confidence estimates?

4. Does a human decision maker with an automated
decision-support system perform better than either of
them alone, when they share confidence estimates?



Background

Cognition refers to the set of processes by which people un-
derstand the world (eg. reading a textbook chapter), whereas
metacognition refers to judgements that we make about our
own cognition (eg. how confident we are in our understand-
ing of the chapter). Metacognitive judgements enable us to
direct our cognition (eg. if we are not confident in the chap-
ter, we decide to dedicate more time to understanding it). For
example, people are often aware of their mistakes, and re-
port levels of confidence in their choices that correlate with
objective performance. While metacognition has been inves-
tigated in the context of automated agents in the context of
introspective perception (Grimmett et al. 2016), and terrain
assessment (Berczi, Posner, and Barfoot 2015), we focus on
human metacognition.

The fidelity of metacognition is typically assessed by ask-
ing how subjective judgements - such as confidence - track
objective performance. Metacognitive “sensitivity” is de-
fined as the trial-by-trial relationship between confidence
and performance. In a person with high levels of metacog-
nitive sensitivity, trials with high confidence would be very
likely to be correct trials, while trials with low confidence
would be at chance levels of performance. This person’s
confidence would closely track their accuracy, on a trial-
by-trial basis. In contrast, a person with very low levels
of metacognitive sensitivity would be no more likely to be
correct on trials when their confidence judgements were
high than those when their confidence judgements were
low (Fleming and Lau 2014).

Bahrami et al. showed that metacognition plays an im-
portant role in joint decision-making. In their experiments,
participants judged which of two briefly-presented stimuli
contained an oddball target. Participants worked in dyads.
They first made their decision individually, then shared their
decisions, and if they disagreed, they discussed the matter
until they reached a joint decision. The results led to the con-
clusion that “for two observers of nearly equal visual sen-
sitivity, two heads were definitely better than one provided
they were given the opportunity to communicate freely.” In
discussing the mechanism for the two-heads-better-than-one
(2HBT1) effect, the authors assumed that each individual
can monitor the accuracy of their performance and can com-
municate their confidence accurately to the other member.

Method

We will conduct user studies with human participants re-
cruited from the Prolific Academic platform. Each partic-
ipant will complete two tasks: visual-perception decision-
making, and robot-driving decision-making. Participants
will be able to perform the tasks online through a browser.
Both tasks will have a series of trials and on each trial, the
participants will first make a decision, and then rate their
confidence using a Likert scale. We have obtained ethics ap-
proval for our study from the University of Oxford’s Re-
search Ethics Committee. Next, we describe both tasks.

Perceptual Task
We will use a perceptual decision-making task together with
trial-by-trial confidence ratings (Rouault et al. 2018). On
each trial, participants will be first presented with a fixa-
tion cross for 1000 ms. Two black boxes filled with differing
numbers of randomly positioned white dots will then be pre-
sented for 300 ms. One box will be always half-filled (313
dots out of 625 positions), while the other box will contain
an increment of +1 to +70 dots compared to the standard. Af-
ter 300 ms, the dots will disappear, leaving the black boxes
on the screen until a keyboard button press response is made.
Participants will then be asked to judge which box had the
highest number of dots. The left/right position of the target
box will be pseudo-randomised across all trials. The chosen
box will be highlighted for 500 ms. On every trial, subjects
will then be asked to report their confidence in their response
on a rating scale ranging from 1 (“not confident at all”) to 4
(“very confident”).

The difference in dots will be determined via a calibra-
tion procedure to maintain a constant level of performance
during the experiment and across participants. We will im-
plement a two-down one-up staircase procedure with equal
step-sizes for steps up and down. The step-size will be cal-
culated in log-space, with a starting point of 4.2 (+70 dots),
changing by ± 0.4 for the first 5 trials, ± 0.2 for the next 5
trials and ± 0.1 for the rest of the task.

Robot Driving Task
In this task, the goal will be to drive a Jackal robot through a
doorway to a target cone within a time limit of 15 seconds.
On each trial, participants will first see the world configura-
tion, i.e., the position and orientation of the robot, and the
position of the door. Participants will then be asked to pro-
vide a confidence rating (about reaching the target within 15
seconds) after which the confidence box will disappear. At
this point, the timer will begin a countdown of 15 seconds
and the participant will drive the robot using the keyboard
to reach the cone within the time limit. Success (participant
reaches the cone within the time limit) or failure (time runs
out) will cause the world to reset to a new configuration, and
a new trial will begin.

Similar to the perceptual task, we will add a calibration
procedure to maintain a constant level of performance dur-
ing the experiment and across participants. We will achieve
this by adding a delay to the control such that key presses
made by the participant will take effect on the robot after
a delay. We will implement a two-down one-up staircase
procedure with equal step-sizes for steps up and down. If
the participant fails twice, the delay will reduce by 10 mil-
liseconds and if the participant succeeds twice, delay will
increase by 10 milliseconds.

Research Plan
In this section, we describe our research questions and our
proposed approach towards investigating them. Our first set
of research hypotheses considers the case where the human
operator has to choose between two automated controllers.
The second set considers the case where the human chooses



between themself and a controller. The final set considers
the effect of learning.

Selecting Between Two Controllers

The first set of hypotheses consider controller selection. A
single operator has to choose between two available con-
trollers that will then autonomously drive the robot in our
robot driving task. One of the controllers is very maneu-
verable but drives slower, and the other has a faster speed
but struggles with hard maneuvering. Therefore, the oper-
ator is uncertain about their performance as it varies de-
pending on the configuration of the world. We want to in-
vestigate whether humans show metacognitive sensitivity in
this problem, whether metacognitive sensitivity generalises
across tasks, and whether the 2HBT1 effect holds true in this
problem. Participants will go through a familiarisation phase
at the beginning of the session where they will observe the
behavior of the two controllers.

Hypothesis 1: Humans show metacognitive sensitivity in
controller selection The participant will be first shown the
world configuration based on which they will have to select
one of the two controllers. Every trial would have a correct
choice, i.e., one of the two controllers will be able to com-
plete the task better than the other, and this correct answer
will be known to the experimenters in advance. We hypoth-
esise that trial-by-trial confidence ratings given by partici-
pants will track the outcome of the robot driving task. When
the confidence is high, the chosen controller will succeed in
reaching the goal within the time limit, and when the confi-
dence is low, the chosen controller will fail half the time. We
will gather participant confidence ratings and the resulting
task outcomes and extract metrics of metacognitive sensitiv-
ity such as meta-d’ (Fleming and Lau 2014).

Hypothesis 2: Humans metacognitive sensitivity gener-
alises across tasks We hypothesize that the metacognitive
sensitivity of participants in the visual-perception task will
be correlated to that in the controller-selection task (Mazan-
cieux et al. 2020). To analyse this, we will gather confidence
ratings and task outcome data in the visual perception task,
and analyse it for correlation against the data gathered in the
controller selection task.

Hypothesis 3: Two heads are better than one for con-
troller selection We will have two participants jointly per-
form the controller-selection task. Both participants will be
asked to first individually choose a controller. In case the
two participants’ choices do not agree, the final choice will
be made either by random selection or by picking that choice
which was made with higher confidence. Our hypothesis is
that the choice resulting from the higher confidence selec-
tion will result in better team performance as opposed to ran-
dom selection. Further, the choice will also result in better
performance than either of the participants’ individual per-
formance. We will compare the resulting success percentage
against both the participants’ individual performance.

Selecting Between Self and Controller
Our second set of hypotheses will investigate the condition
when the operator has to choose between themself and an
automated controller. The operator is uncertain about the
performance of themself as well as the controller, depend-
ing on the world configuration. The operator will go through
a familiarisation phase where they will get to drive the robot
themself as well as watch the controller drive the robot. We
want to investigate the same hypotheses in the previous sec-
tion but applied to this setting.

Hypothesis 4: Humans show metacognitive sensitivity
when selecting between self and controller We will
gather participant task outcomes and confidence ratings, and
extract meta-d’. The difference from hypothesis 1 is that
rather than choosing between two external controllers, the
participant will have to drive the robot themself to establish
whether the trial is successful.

Hypothesis 5: Humans metacognitive sensitivity gener-
alises across tasks We will gather confidence ratings and
task outcome data in the visual-perception task, and analyse
it for correlation against the data from the robot-driving task.

Hypothesis 6: Two heads are better than one for select-
ing between two human operators Two participants will
be asked to jointly decide who will drive the robot. There
will be an initial familiarisation phase where both partici-
pants will be able to drive the robot, as well as watch the
other participant drive the robot. In the experiment phase,
both participants will first give their individual choice of
who should drive the robot, along with a confidence rating.
If their choices are different, the choice with the higher con-
fidence will be selected. The corresponding participant will
then drive the robot. The overall success rate will be com-
pared against both the participants’ individual success rates.

Learning
The final set of hypotheses is focused on learning. The ques-
tion here is whether increased experience with the task leads
to improved metacognitive sensitivity? And, what is the role
of decision outcome feedback on joint decision making?

Hypothesis 7: Human metacognitive sensitivity in-
creases with increased task experience We will compare
metacognitive sensitivity between the initial and the final
stages across various task settings: selecting between two
controllers, selecting between self and controller, and the
presence/absence of trial outcome as feedback.

Hypothesis 8: Decision outcome feedback is not needed
Studies have shown that team performance is indepen-
dent of the presence or absence of task outcome as feed-
back (Bahrami et al. 2012b). We will investigate whether the
same observation holds in our robot driving task. In the two
participant joint choice experiments, we will provide task
outcome as feedback to one group of participants. We hy-
pothesise that the team performance will not be affected by
the presence or absence of the feedback about the outcome
of the trial.



Conclusion
We considered the problem of joint decision-making involv-
ing human operators working with robots, and described
our proposed approach to investigate whether two heads are
better than one in such tasks. Through a visual-perception
and a robot-driving task, we established hypotheses about
the presence and transfer of human metacognitive sensitiv-
ity in humans. The human operator could choose between
autonomous controllers, or between themself and an au-
tonomous controller. Finally, we proposed to investigate the
impact of learning through increased task experience. We
hypothesised that metacognitive sensitivity in human opera-
tors would increase with further exposure to the task. Over-
all, this work will elucidate mechanisms of decision-making
in human-robot interactions.
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