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Abstract 

To effectively communicate and collaborate with others, we must monitor not only other 

people’s cognitive states (e.g., what someone thinks or believes), but also their metacognitive 

states (e.g., how confident they are in their beliefs). Confidence is however rarely communicated 

explicitly: instead, we often perceive others’ confidence via implicit signals such as speech 

prosody or movement dynamics. Recent advances in artificial intelligence (AI) have broadened 

the scope of these metacognitive inferences: artificial agents often perform similarly to humans 

yet rarely explicitly signal their confidence in their beliefs, raising the question as to how humans 

attribute confidence to AI. Here we report five pre-registered experiments in which participants 

observed human and artificial agents make perceptual choices, and reported how confident they 

thought the observed agent was in each choice. Overall, attributions of confidence were sensitive 

to observed variables such as task difficulty, accuracy, and response time. Strikingly, participants 

attributed higher confidence to AI agents compared to other humans, even though their 

behaviour was identical. An illusion of greater confidence in artificial agents’ decisions 

generalised across different behavioural profiles (Experiment 2), agent descriptions (Experiment 

3), and choice domains (Experiment 4). Attributions of confidence also influenced advice-taking 

behaviour, as participants were more willing to accept the advice of artificial systems compared 

to matched humans (Experiment 5). Overall, our results uncover a systematic illusion of 

confidence in AI decisions, and highlight the importance of metacognition in guiding human-

machine interactions.  
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Significance Statement 

Artificial intelligence is increasingly pervasive in our daily lives, making the study of 

human-machine interactions a key challenge for cognitive science. Perceptions of machine 

confidence are likely to play a key role in how we interact and collaborate with artificial systems, 

and yet little is known about how we attribute confidence to AI algorithms. Here we show that 

when watching other agents make decisions, people consistently overestimate the confidence of 

artificial agents compared to other humans, even when their behaviour is identical. Perceived 

confidence also affected advice-taking and perceived trustworthiness. Taken together, these 

results uncover a powerful illusion of confidence in artificial systems and highlight a central role 

for metacognition in human-machine interactions. 
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Autonomous systems are increasingly pervasive in our daily lives – from personal 

assistance and product suggestions to healthcare recommendations and automated transportation. 

As artificial intelligence (AI) becomes progressively advanced and ubiquitous, key questions 

arise regarding how humans interact with machines. For example, building more optimal 

recommendation algorithms is useful only insofar as humans are willing to trust their 

suggestions, and designing more skilled robots is useful only insofar as humans are willing to 

rely on their assistance. Technological advances must thus be complemented with a psychology 

of human-machine collaboration – a novel challenge for cognitive science [1]. 

The study of human-machine interactions may be especially pressing given that they 

might involve different processes compared to human-human interactions [2]. For example, past 

work has shown that humans hesitate to rely on advice or help from algorithms, even when they 

perform equally well if not better than humans – a phenomenon known as ‘algorithm aversion’ 

([3-4]; for a review, see [5]; c.f. [6]). And while attitudes towards AI can be enhanced by factors 

such as affective abilities [7], physical presence [8], or decision interpretability [9], a prior belief 

about actions being generated by computers (vs. humans) can be sufficient to influence 

perceptions of otherwise identical behaviours [10-11].  

One striking difference between human-human and human-machine interactions is that 

when we make decisions with other people, we have access not only to their behaviour but also 

to their metacognitive states – for instance, how confident they are in a belief or decision (for a 

review, see [12]). In humans, such confidence can be revealed not only explicitly, via verbal 

estimates (e.g. [13]) or risk preferences (e.g. [14]), but also implicitly via response times [15-17], 

movement dynamics [18], and speech prosody [19-20]. In other words, humans regularly infer or 

attribute confidence to each other by tracking implicit signatures of metacognition. This type of 

information is highly valuable in collaborative decision-making [21]: for example, it helps 

resolve disagreements among group members [22], and indeed group decisions are more 

effective than individual ones only when confidence estimates are shared [23].  

If attributions of metacognition are key to human-human collaboration, they should also 

be central to human-machine interactions. However, little is currently known about how humans 

attribute metacognition and confidence to AI systems. In fact, this type of inference is difficult 

when interacting with machines which are typically designed to fulfil first-order rather than 

metacognitive functions, and often do not carry outward signs of confidence in their internal 
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processes (although see [24-27]). In fact, AI’s capacity for metacognition is developing and will 

likely differ from humans’ [28]. For example, while in humans confidence typically decreases as 

tasks get harder, some models show the opposite pattern of results [29]. Here we thus set out to 

investigate attributions of metacognition to humans and machines, and whether such attributions 

affect impressions of trust and competence. 

To investigate attributions of metacognition, we designed a paradigm where participants 

watched other agents make perceptual choices and were asked to determine how confident the 

agents were in their choices. This key dependent measure thus involves participants’ estimates of 

others’ confidence, as opposed to estimates of others’ actual performance (e.g. [30]), or 

participants’ own confidence in others’ choices (e.g. [31]). This design allowed us to investigate 

how attributions of confidence are modulated by decision variables such as task difficulty, 

observed accuracy, and observed response time. At the same time, we kept these overall 

behaviours constant across different agents and varied the nature of the agents making the 

choices – which allowed us to examine how attributions of metacognitive states can depend on 

prior beliefs about agency, even when actual performance was in fact identical. 

To pre-empt our results, we found a robust illusion of confidence in AI systems, despite 

observed behaviour being identical to matched human agents, and despite attributions of 

metacognition in both cases being governed by similar factors. In additional experiments, we 

tested the robustness and generalisability of these results, examining how confidence is attributed 

when machines display human-like (Experiment 1) or stereotyped behaviour (Experiment 2), 

when artificial agents are described in more or less anthropomorphic ways (Experiment 3), and 

when the task involves a general knowledge quiz (Experiment 4) rather than perceptual 

judgments. Finally, we explored the impact of perceived confidence on actual behaviour by 

examining advice-taking in a collaborative decision-making task (Experiment 5). Overall, these 

results reveal how people perceive metacognition in humans and machines, and demonstrate how 

even illusory attributions of confidence can have powerful influences on perceived 

trustworthiness and collaborative behaviour in human-human and human-machine interactions. 
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Results 

Experiment 1: Observing Perceptual Decisions 

To investigate how people attribute confidence to others, we designed a task divided into 

two phases, as illustrated in Figure 1. In the first phase (‘Self’), participants made a series of 

perceptual decisions – namely, which of two noise patches contained a Gabor stimulus with 

varying opacity (Fig. 1A). In the second phase (‘Other’), participants watched other agents make 

these decisions, with these agents being either another person (Fig. 1B) or a robot (Fig. 1C), 

presented in a randomised order. The behaviour of these agents (namely, accuracy and response 

times) was determined by the behaviour of one of 20 real “counterpart participants” who had 

previously taken part in the experiment (for details, see Methods and Materials). Importantly, 

each participant was matched with one counterpart participant, whose performance determined 

the behaviour of both agents seen by the participant in the ‘Other’ phase. The same behavioural 

parameters and generative functions thus determined the behaviour of both the other person and 

the robot, such that within each participant performance was equated across the two agents. We 

hypothesised that estimates of other agents’ confidence would depend on the difficulty of the 

task, but also on their behaviour (namely, accuracy and response times), as well as on their 

nature (human vs. artificial). All analyses reported here were pre-registered unless noted 

otherwise. 
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Figure 1. Overview of Design for Experiment 1. (A) Participants first completed a perceptual 

decision-making task where they selected which of two stimuli contained a Gabor patch (Phase 

One; ‘Self’). (B and C) Next, participants observed other agents complete the same task, and 

reported their perception of the other agent’s confidence (Phase Two; ‘Other’). The other agent 

was described and depicted as either another person (B) or a robot (C), although their actual 

performance on the task was identical.  
 

Cues to Others’ Confidence 

Attributions of confidence were sensitive to task parameters (i.e., task difficulty) as well 

as observed performance (i.e., accuracy and response times). As predicted, participants attributed 

higher confidence on easier trials where the target was presented at higher contrast (main effect 

of task difficulty: B=0.54, SE=0.14, t(19777)=3.70, p<.001, CI=[0.25, 0.82]). Confidence 

estimates were also higher on trials where the agent responded faster (main effect of observed 

response time: B=-9.89, SE=0.31, t(19729)=-32.31, p<.001, CI=[-10.49, -9.29]; Fig. 2A), and on 
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trials where the agent responded accurately (mean=55.31, SE=1.16) vs. inaccurately 

(mean=44.59, SE=1.19; main effect of observed accuracy: B=12.27, SE=0.91, t(19788)=13.51, 

p<.001, CI=[10.49, 14.05]). Interestingly, this effect was also sensitive to task difficulty: there 

was an interaction between observed accuracy and task difficulty (B=2.61, SE=0.29, 

t(19783)=8.97, p<.001, CI=[2.04, 3.18]; Fig. 2B) wherein easier trials generated higher 

confidence estimates when the agent was correct (slope=1.85, SE=0.06, CI=[1.73, 1.97]), but not 

when the agent was incorrect (slope=-0.63, SE=0.11, CI=[-0.84, -0.41]). This effect mirrors a 

classic statistical signature of confidence, the folded X pattern [32-33], suggesting that people 

have a sophisticated understanding of the factors affecting others’ confidence. 

We also investigated a possible relationship between self-directed and other-directed 

metacognition. We operationalised self-directed metacognition as metacognitive efficiency as 

participants were completing the detection task in Phase One, and other-directed metacognition 

as the granularity of their attributions for other agents in the observation in Phase Two. Contrary 

to our hypothesis, there was no correlation between participants’ metacognitive efficiency and 

their capacity for other-directed metacognition (r(111)=-0.06, p=.556). 

 

 
Figure 2. Evaluating Others’ Confidence. (A) Inferred confidence was affected by observed 

response time, with higher confidence inferences on trials where the agent responded faster. (B) 

Inferred confidence was generally higher for easier trials, but only when the agent was accurate 

(green) and not when inaccurate (red). These data are from Experiment 1, but these patterns were 

robust across all experiments. Error bands represent 95% confidence intervals. 
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Confidence in Humans versus Machines 

We next turned to our key question of whether and how attributions of confidence 

differed between humans and machines. Strikingly, perceived confidence was higher for robots 

(mean=54.18, SE=1.12) vs. other people (mean=45.65, SE=1.12), despite their performance 

being identical (main effect of agent: B=11.82, SE=0.88, t(19763)=13.41, p<.001, CI=[10.09, 

13.54]; Fig. 3A). This effect of agent also interacted with the main effects of difficulty (B=-0.82, 

SE=0.28, t(19764)=-2.91, p=.004, CI=[-1.38, -0.27]) and with observed response time (B=-2.30, 

SE=0.56, t(19763)=-4.09, p<.001, CI=[-3.40, -1.20]), in that difficulty had a stronger effect on 

perceived confidence when the attribution was about another person (difficulty slope for other 

person=0.78, SE=0.09, CI=[0.61, 0.95], slope for robot=0.43, SE=0.09, CI=[0.26, 0.60]), while 

response time had a stronger effect on perceived confidence when the attribution was about the 

robot (response time slope for other person=-8.83, SE=0.42, CI=[-9.65, -8.02], for robot=-11.13, 

SE=0.41, CI=[-11.93, -10.33]). Taken together, these analyses show that participants attributed 

greater confidence to the robot, despite the agents having identical performance – an ‘illusion of 

confidence’ in AI. 
 

Mechanisms of Confidence Attribution 

To further deconstruct the relative contribution of observed behaviour and prior beliefs 

about the agents to confidence attributions, in an additional exploratory analysis we investigated 

how confidence attributions on a given trial were affected by observations on previous trials 

(Fig. 3B). We found that confidence attributions on a given trial were influenced by the type of 

agent and their behaviour on the current trial (main effect of agent, accuracy, difficulty, response 

time, accuracy × difficulty interaction: all ps<.001; Fig. 3B, left), but also by their behaviour on 

previous trials. This was especially true for previous response times (all ps<.006), and less so for 

the interaction between accuracy and difficulty (ps=.386, .094, .968, .029, and .226; Fig. 3B, 

middle). The strongest predictors of confidence attributions however were previous confidence 

attributions, which leaked into the current trial (all ps<.001; Fig. 3B, right). This suggests that 

while attributions of confidence are sensitive to observed behaviour, they are also influenced by 

longer-timescale fluctuations, consistent with previously reported empirical patterns in self-

directed metacognitive judgments [34-35]. This confidence leak phenomenon was also similar 

when interacting with both human and AI agents, as the impact of all variables from previous 

trials did not interact with agent type (all ps>.095, except for the accuracy x difficulty interaction 
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on the third and fourth previous trials being stronger for the robot vs. the human, ps=.037 and 

.058). This suggests that attributions of confidence are sophisticated, in that they show 

integration over time similar to that observed for self-directed metacognition, but they are also 

biased, in that they are systematically higher for robots irrespective of both current and recent 

observed behaviour. 

In addition, we sought to further characterise this illusion of confidence by exploring its 

timecourse across trials, i.e. as participants observe the agents make their choices (Fig. 3C). We 

found that in general, attributions of confidence became lower over the course of the block (main 

effect of trial number: B=-0.36, SE=0.07, t(19769)=-5.14, p<.001, CI=[-0.50, -0.22]), with an 

illusion of confidence in AI being strongest at the beginning of the relevant experimental blocks 

(interaction between trial number and agent: B=-1.09, SE=0.14, t(19769)=-7.80, p<.001, CI=[-

1.36, -0.81]). This learning effect was especially strong for participants who observed another 

person before the robot (three-way interaction between trial number, agent, and block order: 

B=1.40, SE=0.22, t(19769)=6.39, p<.001, CI=[0.97, 1.82]), suggesting that participants had an 

expectation that the robot would be more confident, especially immediately after watching the 

other person perform the task. Indeed, the effects of both trial number and agent were stronger 

for participants who watched the other person first (two-way interaction between trial number 

and block order: B=0.34, SE=0.11, t(19769)=3.12, p=.002, CI=[0.13, 0.56]; between agent and 

block order: B=-11.60, SE=1.48, t(19769)=-7.83, p<.001, CI=[-14.51, -8.70]). Together, these 

results suggest that while participants were sensitive to observed behaviour, they also had a 

strong prior belief that machines would be more confident, especially after having observed 

humans first. 
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Figure 3. Attributions of Confidence in Humans and AI in Experiment 1. (A) Judgments of 

perceived confidence were higher for the artificial agent (red) compared to the human agent 

(blue). (B) In addition to agent (purple), these attributions were also predicted by behaviour 

observed on the current trial (left), as well as by confidence estimates on the previous trials 

(right). (C) The difference between agents was robust across experimental trials, and was 

especially strong at the beginning of the experiment for people who observed the other person 

first and the artificial agent later. (D) Perceived trustworthiness was also higher for robots 

compared to other people. Error bars correspond to mean ± 95% confidence intervals, for A and 

D also subtracting out the shared variance***p<.001. 
 

From Perceived Confidence to Social Impressions 

At the end of the experiment, we also asked participants to evaluate the agents’ 

trustworthiness and competence (for details, see Methods and Materials). As depicted in Figure 

3D, the artificial agent was rated as more trustworthy than the other person (t(112)=3.51, p<.001, 
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d=0.33, CI=[0.14, 0.52]). The artificial agent was also rated as more competent, despite having 

identical performance to the human counterpart (t(112)=7.46, p<.001, d=0.70, CI=[0.49, 0.91]). 

These higher-level social impressions thus mirror the higher attributions of confidence – and 

indeed, an additional exploratory analysis revealed that attributions of confidence were positively 

correlated with both trustworthiness (r(224)=0.23, p<.001) and competence (r(224)=0.26, 

p<.001). This suggests that attributions of metacognition are related to the formation of broader 

personality impressions, even for artificial systems. 
 

Experiment 2: Machine-like Behaviour 

The results of Experiment 1 show that people form estimates of other agents’ confidence 

guided by a sophisticated model of their behaviour, but that these attributions are consistently 

inflated for artificial agents. In Experiment 1, however, the behaviour of both agents was human-

like, with accuracy and response times derived from the actual behaviour of “counterpart 

participants” who had previously taken part in the study. In Experiment 2, we sought to test the 

robustness of this illusion of confidence in AI by investigating whether it also arises when 

observing stereotyped, machine-like behaviour. This experiment was identical to Experiment 1, 

except that accuracy at each difficulty level was now based on the accuracy of a neural network 

trained to complete the perceptual discrimination task, and observed response times were now 

faster and less variable (for details, see Methods and Materials). As in Experiment 1, these 

generative functions were kept constant across both machine and human agents. 

As in Experiment 1, we found main effects of difficulty (B=0.98, SE=0.07, 

t(19074)=13.28, p<.001, CI=[0.83, 1.12]) and accuracy (B=8.97, SE=0.45, t(19076)=19.82, 

p<.001, CI=[8.08, 9.85]), as well as an interaction between these factors (B=2.51, SE=0.15, 

t(19076)=17.04, p<.001, CI=[2.22, 2.80]) wherein easier trials generated higher confidence 

estimates when the agent was correct (slope=2.23, SE=0.07, CI=[2.10, 2.36]), but not when the 

agent was incorrect (slope=-0.28, SE=0.13, CI=[-0.54, -0.02]). Most importantly, we again 

observed a main effect of agent (B=12.07, SE=0.44, t(19070)=27.62, p<.001, CI=[11.21, 

12.93]), with higher perceived confidence for the robot (mean=64.15, SE=1.08) vs. the other 

person (mean=52.08, SE=1.08; Fig. 4A). Agent type again interacted with difficulty (B=-0.68, 

SE=0.14, t(19070)=-4.76, p<.001, CI=[-0.96, -0.40]), with a stronger relationship between 

difficulty and perceived confidence for the other person (slope=1.32, SE=0.10, CI=[1.13, 1.52]) 

compared to the robot (slope=0.64, SE=0.10, CI=[0.45, 0.84]).  
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We also replicated the (now pre-registered) effect of trial order, with stronger differences 

in the effect of agent at the beginning of each block, especially for participants who watched the 

other person before the robot (three-way interaction between trial number, agent, and block 

order: B=1.64, SE=0.22, t(19069)=7.36, p<.001, CI=[1.20, 2.08]). Higher-level social 

impressions were again more positive for the robot, who was perceived as more trustworthy 

(t(108)=4.26, p<.001, d=0.41, CI=[0.21, 0.60]) and more competent (t(108)=6.67, p<.001, 

d=0.64, CI=[0.43, 0.84]) – with these traits also being positively correlated with confidence 

attributions (trustworthiness r(216)=0.32, p<.001; competence r(216)=0.44, p<.001). 

 

 
Figure 4. Generalisation Tests for an Illusion of Confidence in AI. For each experiment, we 

report key manipulations (top) and results (bottom). Perceived confidence was higher for the 

artificial agent (red) compared to the human agent (blue) across all experiments. *p<.05, 

***p<.001. 
 

Experiment 3: Machine-like Descriptions 

In both Experiments 1 and 2, the non-human agent was described and depicted as a robot 

(Fig. 1C). To ensure that attributions of metacognition were not influenced by this 

anthropomorphic presentation, we conducted a new experiment identical to Experiment 2, but 

where the agents were no longer explicitly pictured, and the non-human agent was described as a 

computer algorithm (for details, see Methods and Materials).  

The results again replicated Experiments 1 and 2: we found main effects of difficulty 

(B=1.17, SE=0.11, t(9798)=10.17, p<.001, CI=[0.94, 1.39]) and accuracy (B=14.01, SE=0.71, 

t(9799)=19.75, p<.001, CI=[12.62, 15.40]), as well as an interaction between these factors 
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(B=3.67, SE=0.23, t(9799)=15.94, p<.001, CI=[3.22, 4.12]) wherein easier trials generated 

higher confidence estimates when the agent was correct (slope=3.00, SE=0.10, CI=[2.80, 3.21]), 

but not when the agent was incorrect (slope=-0.67, SE=0.21, CI=[-1.07, -0.26]). Most 

importantly, we again observed a main effect of agent (B=8.79, SE=0.70, t(9794)=12.62, p<.001, 

CI=[7.43, 10.16]), with higher perceived confidence for the AI (mean=56.83, SE=1.83) vs. the 

other person (mean=48.04, SE=1.83; Fig. 4B). This is particularly striking given that in this 

design displays of agent behaviour were now identical, with the only difference being whether 

the agent was labelled as either a human or computer algorithm prior to the observation trials.  

We also replicated the interaction between agent and difficulty (B=-0.86, SE=0.23, 

t(9794)=-3.81, p<.001, CI=[-1.30, -0.42]), as well as the three-way interaction between trial 

number, agent, and block order (B=1.00, SE=0.36, t(9794)=2.76, p=.006, CI=[0.29, 1.70]). As in 

Experiments 1-2, the artificial agent was seen as more trustworthy (t(55)=5.13, p<.001, d=0.69, 

CI=[0.39, 0.97]) and more competent (t(55)=6.22, p<.001, d=0.83, CI=[0.52, 1.13]) – with these 

traits also being positively correlated with confidence attributions (trustworthiness r(110)=0.34, 

p<.001; competence r(110)=0.33, p<.001). 
 

Experiment 4: A General Knowledge Task 

All experiments reported thus far involved a perceptual decision-making task, with 

participants deciding (and watching others decide) which of two stimuli contained a Gabor 

grating. However, past work has shown that attitudes towards algorithms can vary depending on 

the type of task at hand [7]. To ensure these effects are not specific to tasks involving perception, 

we investigated a different decision-making domain involving real-world knowledge [32]. 

Experiment 4 was thus similar to Experiment 3, except that the perceptual task was replaced by a 

general knowledge task where agents select which of two countries has a larger population ([36]; 

Fig. 4C; for details, see Methods and Materials). 

The results were consistent with all previous Experiments: we obtained main effects of 

difficulty (B=1.53, SE=0.53, t(10320)=2.92, p=.004, CI=[0.50, 2.56]) and response time (B=-

5.92, SE=0.19, t(10324)=-30.69, p<.001, CI=[-6.29, -5.54]) on perceived confidence; we again 

found an interaction between difficulty and accuracy (B=4.22, SE=1.05, t(10319)=4.03, p<.001, 

CI=[2.17, 6.27]) wherein easier trials generated higher confidence estimates when the agent was 

correct (slope=2.71, SE=0.32, CI=[2.09, 3.34]), but not when the agent was incorrect (slope=-

1.43, SE=0.52, CI=[-2.45, -0.41]). Most importantly, we again observed a main effect of agent 
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(B=2.71, SE=1.29, t(10313)=2.10, p=.036, CI=[0.18, 5.24]), with higher perceived confidence 

for the AI agent (mean=63.15, SE=1.25) vs. the other person (mean=59.12, SE=1.25; Fig. 4C). 

We also replicated the three-way interaction between trial number, agent, and block order 

(B=0.81, SE=0.32, t(10319)=2.51, p=.012, CI=[0.18, 1.45]). Finally, the artificial agent was 

again seen as more trustworthy (t(58)=3.32, p=.002, d=0.43, CI=[0.16, 0.70]) and more 

competent (t(58)=4.88, p<.001, d=0.63, CI=[0.35, 0.91]) – with these traits also being positively 

correlated with confidence attributions (trustworthiness r(116)=0.38, p<.001; competence 

r(116)=0.43, p<.001). These results suggest that even in general knowledge tests, people expect 

algorithms to be more confident in their answers, despite the algorithm’s performance being 

equivalent to other agents. This shows how the effects uncovered in previous experiments are not 

specific to perceptual decision-making but rather also arise in general-knowledge domains 

relevant to real-world decision-making.  
 

Experiment 5: Influences on Advice-Taking 

The experiments discussed so far show that people can form estimates of others’ 

confidence across different behavioural profiles, agent descriptions, and task domains. These 

attributions were however always measured via explicit ratings (“How confident do you think 

the other person was?”), and it remains unclear whether and how they affect behaviour in more 

ecologically valid scenarios. For example, effective metacognition is important for guiding 

advice-taking in joint decision-making [21]: optimal advice integration should weigh our own 

confidence against others’ confidence, such that advice given with low confidence should have a 

lower impact than advice given with high confidence [14]. To investigate the effect of perceived 

confidence on advice-taking, we designed a task where participants make perceptual choices, and 

are then given the opportunity to revise their choice after receiving ‘advice’ from one of two 

other agents [37] – either another person or a computer algorithm (Fig. 4D; for details, see 

Methods and Materials). 

Advice-taking behaviour was consistent with the explicit ratings of perceived confidence 

from previous experiments. When receiving advice that was discordant with their initial choices 

(36.07% of all trials), participants sometimes reversed their choices (29.51% of discordant trials), 

and they did so more often when the task was more difficult (main effect of difficulty, B=0.08, 

SE=0.02, z=5.08, p<.001, CI=[0.05, 0.11]) and when they were initially wrong (main effect of 

initial accuracy, B=0.99, SE=0.10, z=9.79, p<.001, CI=[0.79, 1.19]). There was also an 
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interaction between difficulty and initial accuracy (B=0.20, SE=0.03, z=6.23, p<.001, CI=[0.14, 

0.26]) wherein initial choices were revised more often on more difficult trials when the initial 

choice was incorrect (slope=0.18, SE=0.02, CI=[0.14, 0.23]), but not when correct (slope=-0.02, 

SE=0.02, CI=[-0.06, 0.03]). Most importantly, we observed a main effect of agent (B=1.37, 

SE=0.10, z=13.08, p<.001, CI=[1.16, 1.58]), with a greater number of choice revisions after 

receiving advice from the AI (mean=1.87, SE=0.20) vs. the other person (mean=0.45, SE=0.19; 

Fig. 4D). We also replicated the three-way interaction between trial number, agent, and block 

order (B=0.12, SE=0.05, z=2.37, p=.018, CI=[0.02, 0.22]). Finally, we found similar effects of 

agent on higher-level social impressions – with the artificial agent being perceived  as more 

trustworthy (t(51)=4.05, p<.001, d=0.56, CI=[0.27, 0.85]) and more competent (t(51)=3.60, 

p<.001, d=0.50, CI=[0.21, 0.79]), in line with advice taking (trustworthiness r(102)=0.50, 

p<.001; competence r(102)=0.48, p<.001). This experiment thus showed that participants do not 

just attribute higher confidence to artificial agents, but are also more willing to defer to their 

advice as a consequence. 

 

Discussion 

Successful cooperation requires an understanding of others’ mental states such as their 

feelings, goals, and beliefs – and indeed much work across all areas of psychology and 

neuroscience has explored our rich capacity for mental state attributions. Here we consider that 

in addition to others’ cognitive states, social interactions also require that we perceive others’ 

metacognitive states – namely how confident others are in their beliefs and decisions. Across five 

experiments, we found that when watching other agents make decisions, people form 

sophisticated estimates of their confidence, influenced by both task variables (e.g., difficulty) and 

observed behaviours (e.g., response time). Strikingly, however, people also consistently ascribed 

higher confidence to the decisions of artificial agents, compared to those of performance-

matched humans. This illusion of confidence emerged from both human- and machine-like 

behaviour (Experiment 2), and from both anthropomorphic and non-anthropomorphic agent 

descriptions (Experiment 3). Moreover, these effects were consistent across different decision 

domains (Experiment 4), and also manifested in a setting involving advice-taking (Experiment 

5). 
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 The illusion of confidence uncovered in these experiments was especially striking given 

that in each experiment, the behaviour of the artificial agents was in fact equated to the human 

agents: the observed accuracy and response times were drawn from the same generative 

functions, such that any difference in perceived confidence solely reflected participants’ 

assumptions about the agents. Indeed, further analyses of learning effects revealed that this bias 

was stronger at the beginning of the experimental blocks, and diminished thereafter as 

participants observed the agents’ behaviour — suggesting that it may originate from a 

generalised prior belief that machine decisions are more confident. However, while this effect 

was modulated by observation and learning, it was also robust and highly replicable: the illusion 

of confidence in artificial agents was consistent across different behavioural profiles, arising both 

when the agents’ behaviours were based on actual participants who had previously completed the 

experiment (Experiments 1, 4, and 5) and when based on a neural network trained to complete 

the task (Experiments 2 and 3). In addition to its robustness, the illusory boost in confidence for 

artificial agents was also sensitive to contextual factors, interacting with choice difficulty in 

Experiments 1 to 3, and with response times in Experiment 1. 

Of note, in all Experiments participants reported that the computer algorithm was not just 

more confident in each choice, but also overall more trustworthy and more competent compared 

to the matched human counterpart. While future work is needed to probe possible causal 

relationships between perceived metacognition and social impressions, this result suggests that 

illusions of confidence may play an important role in human-machine interactions. For example, 

past work has shown that when making decisions in groups, individuals adapt their own 

confidence estimates to align with others’ [13], raising the possibility that metacognitive 

processes may be altered when collaborating with humans vs. machines. In addition, an illusion 

of confidence may play a role in collaborations involving delegation, where human operators can 

choose to delegate tasks to automated agents [38] and may choose to do so more often if higher 

confidence is attributed to a potential collaborator. The results of Experiment 5 are especially 

relevant in this respect, as they suggest that attributions of confidence affect advice taking in a 

scenario akin to AI support and assistance. In turn, our findings highlight the necessity for 

developing solutions for artificial metacognition that allow AI agents to appropriately 

communicate (potentially low) degrees of confidence in their behaviour [39]. Future work could 
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explore types of metacognitive broadcasts (e.g., implicit vs. explicit) to facilitate alignment in 

human-AI interactions, and how these might help counter inaccurate priors. 

More broadly, these investigations demonstrate a rich capacity for metacognitive 

attributions, introducing a new dimension to social perception and mentalizing. In particular, 

participants were able to intuitively perceive other agents’ metacognitive states based on 

observed variables that past research on metacognition has shown to affect (self-)confidence. For 

example, in Experiments 1 and 4 participants used response time as a cue to confidence, with 

faster response times leading to higher confidence attributions. This result is consistent with past 

work showing that response times can function as cues not only to confidence [40], but also to 

mental states including cognitive effort [41], abstract preferences [15, 42], personality traits [43], 

and moral character [44]. But rather than being parametrically dependent on just one variable, 

attributions of metacognitive states incorporated several cues as well as their interactions. For 

example, in all experiments participants used task difficulty as a cue to confidence, with higher 

confidence attributions for easier trials — but only when the decisions were correct, mirroring a 

classic statistical signature of confidence [32-33]. Importantly, comparisons with participants’ 

own metacognitive profiles in Experiment 1 confirmed that these attributions did not just reflect 

participants’ own confidence, but truly reflected actual inferences over others’ behaviour. This 

form of ‘folk metacognition’ adds a new dimension to a growing body of evidence for how we 

achieve a naïve understanding of higher cognitive processes such as awareness and attention [45-

47]. 

This initial demonstration of our capacity for metacognitive attributions also opens 

several new avenues for future research. For example, the current tasks involved minimal social 

interactions, with the other agents being described in relatively anonymous and generic terms 

(e.g., “another participant who previously completed this task”). However, everyday life more 

typically involves repeated interactions with known others who may differ in baseline 

metacognitive abilities, above and beyond the current context. For example, past work has shown 

robust individual differences in metacognition [48] related to variation in mental health [49] and 

personality traits such as dogmatism and radicalism [50-51], raising the possibility that perceived 

confidence might depend not just on temporary states (e.g., how fast someone responds in that 

instance), but also on knowledge of more general personality traits (e.g., how fast someone 

responds in that instance compared to how they typically respond in the face of uncertainty).  
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 The types of metacognitive attributions explored in the current study may also have rich 

connections to our robust capacity for self-directed metacognition [52]. This link was partially 

explored in Experiment 1: we expected that participants with better metacognitive insight into 

their performance would also form more fine-grained metacognitive attributions about others, 

but did not find any significant relationship between these measures. This result is relevant to 

past work on action understanding, which posits that inferences of others’ mental states from 

their actions are based on observers’ own motor system. For example, past work has shown that 

inferences of others’ confidence are relative to participants’ own kinematic profiles, likely 

because these judgments are based on simulations of participants’ own motor system [18]. Of 

course, the current experiments differed from these as participants did not have access to 

movement kinematics; but they demonstrate that such judgments need not take into account 

participants’ own metacognitive system, and can in principle be made on the basis of perceptual 

information alone. Future work could probe possible associations and dissociations between self- 

and other-directed metacognition, and the relative weight given to external cues such as response 

times [17] and contextual factors and internal models of self and other ([31]; see also [12]). An 

especially intriguing future direction in this domain is the study of child development, given 

proposals that metacognition may be scaffolded onto the development of social cognition [53-

54]. 

In sum, these results demonstrate that people can form robust impressions of the 

metacognitive states of other agents. Beyond demonstrating the effect of candidate cues that 

affect attributions of metacognition (e.g., response times), we also highlight a striking illusion of 

confidence when attributing metacognition to AI, even when the actual performance is matched 

to humans. This metacognitive illusion has significant consequences for human-AI interactions, 

as countering this bias will require the development of accurate systems for artificial 

metacognition, and reliable means of communication of metacognitive states with humans. 

Collectively, our results point to a rich capacity for metacognitive inference from others’ 

behaviour, and highlight the importance of metacognition in social interactions.  
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Methods and Materials 

Participants 

For each experiment, participants were recruited via Prolific (prolific.co; [55]) in 

exchange for monetary compensation. Participants were able to take part in the experiments if 

they were fluent in English, had a Prolific task approval rate of at least 95%, and had not 

previously participated in any of the other studies reported here. As per our pre-registered plan, 

we recruited N=120 participants for Experiment 1. This sample size was determined via a power 

analysis of pilot data (N=18) and was fixed for Experiment 2. The sample size for the remaining 

experiments was halved to N=60 based on a power analysis of Experiments 1 and 2. All methods 

and procedures were approved by the UCL Research Ethics Committee, and all participants 

provided their informed consent.  

Participants were excluded according to our pre-registered plans if they (1) had a 

viewport size smaller than 720x500px (N=1 in Experiment 4); (2) reported having encountered 

problems (see Debriefing; N=2 in Experiment 1, N=1 in Experiment 2); (3) failed to answer our 

open-ended text questions sensibly (see Debriefing; N=1 in Experiment 1, N=1 in Experiment 5); 

(4) had a mean accuracy in the catch questions about the agents’ confidence lower than 70% for 

Experiment 5 (N=6); and (5) converged on a target with opacity level lower than 5% in Phase 1 

(N=4, 10, 4, 1; in Experiments 1, 2, 3, and 5, respectively). The final sample sizes were thus 

N=113 in Experiment 1 (26 females, Mage=31.65), N=109 in Experiment 2 (32 females, 

Mage=33.76), N=56 in Experiment 3 (25 females, Mage=33.07), N=59 in Experiment 4 (24 

females, Mage=33.22), and N=52 in Experiment 5 (21 females, Mage=33.71). As for the other pre-

registered exclusion criteria, no participants participated more than once as determined via their 

Prolific IDs, and no participants provided uniform confidence ratings in Phase Two (i.e. with 

80% of ratings below 10% or above 90%) for Experiments 1 through 4. 
 

Apparatus 

Participants completed the experiment on their own devices, and were redirected to a 

website hosted on the JATOS server [56]. Stimulus presentation and data collection were 

controlled via custom software written in HTML, CSS, JavaScript, and PHP, using the jsPsych 

library [57]. Their browser window was automatically put in full-screen mode at the beginning 

of the experiment. 
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Experiments 1-3 

 Phase 1: Self. Participants began by completing an image discrimination task illustrated 

in Figure 1A. On each trial, they were shown two noise images side by side, and one also 

contained a Gabor patch. The noise images consisted of randomly intermixed white and black 

pixels, and were randomly selected for each participant on each trial without replacement 

amongst 1200 possible images. The Gabor patches consisted of sinusoidal gratings tilted at an 

orientation of 45° or 135° and were superimposed over the white noise with varying 

transparency, thus varying detection difficulty. Participants indicated which of the two images 

contained a stimulus via a keypress (‘f’ for left, ‘j’ for right), and then rated how confident they 

were in this choice. 

This first phase began with some practice trials, where all gratings were presented at 

100% opacity and feedback was given after each trial. Each trial in these practice blocks 

comprised: (1) a fixation cross (in 42px black Helvetica font), for 500ms; (2) the stimuli 

(120x120px with a 3px black border each, centred on the screen vertically and at -140 and 140px 

horizontally), until response; and (3) response feedback (“Correct” or “Wrong”) and highlight (in 

green [#3CB371] if correct, red [#FF0000] if incorrect), for 1000ms. Each block comprised 4 

trials (2 grating orientations [45, 135 degrees] × 2 grating positions [left, right stimulus]) in a 

random order, and was repeated for each participant until their mean accuracy on the last block 

was at or above 75%. 

Next, participants completed an experimental phase, where the grating opacity started at 

100%, and was then updated on each block via a staircasing procedure: it decreased if accuracy 

in the last block was above 75%; increased if accuracy in the last block was below 60%; and 

remained unchanged otherwise. Decreases and increases occurred in steps of 50, 20, 10, 10, 5, 5, 

2, 2, 2, and 1 until convergence – with a maximum and minimum opacity value of 100 and 0, 

respectively. Each trial comprised: (1) a fixation cross, for 500ms; (2) the stimuli, until response; 

(3) a blue (#0000FF) response highlight, for 500ms; and (4) a confidence prompt, until response 

(“How confident are you?”, to be answered with a slider from 0 [“I am not confident at all”] to 

100 [“I am very confident”]). Each block comprised 8 trials (2 grating orientations [45, 135 

degrees] × 2 grating positions [left, right stimulus] × 2 repetitions) in a random order, and was 

repeated for each participant for a maximum of 200 trials, or until (1) they completed at least 152 

trials; and (2) their accuracy in the last 3 blocks was above 60% and below or equal to 75%.  
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Phase Two: Other. Participants were then introduced to the idea that people can differ 

quite a lot in how confident they are in their choices, and they were shown sample distributions 

of confidence ratings from several previous participants for the same choice difficulty. They then 

began a series of blocks where they were shown choices from other agents and guessed how 

confident they thought the other agent was in that choice. The other agent was either another 

participant (Fig. 1B) or an artificial agent (Fig. 1C) – the key manipulation of interest. The 

artificial agent was referred to either as a ‘robot’ (Experiments 1 and 2) or as a ‘computer 

algorithm’ (Experiment 3).  

Each trial in this phase comprised: (1) a fixation cross, for 500ms; (2) the stimuli, until 

the other agents’ response time (see below); (3) a response highlight, for 500ms; and (4) a 

confidence prompt, until response (“How confident do you think the [other 

person/robot/computer algorithm] was?”, to be answered with a slider from 0 [“The other 

person/robot/computer algorithm was not confident at all”] to 100 [“The other 

person/robot/computer algorithm was very confident”]). The opacity of the Gabor stimulus was 

varied from -5% to 5%, with 0% being the optimal difficulty level determined in Phase 1 – with 

a maximum and minimum opacity value of 100 and 0, respectively.  

Each observer saw two blocks from each agent in a randomised order (i.e., two ‘other 

person’ blocks followed by two ‘robot/computer algorithm’ blocks, or vice versa), and each 

block comprised 44 trials (2 grating orientations [45, 135 degrees] × 2 grating positions [left, 

right box] × 11 difficulty levels [from -5 to +5]) in a randomised order. To remind participants of 

which agent they were observing, we randomly assigned a colour cue (blue [#3C3CA3] or purple 

[#841F42]) to each agent, separately for each participant. In Experiments 1 and 2, the agent was 

also depicted in the centre of the screen from the back, as if they were observing the stimuli. 

Participants were instructed that the image chosen by the other agent would be highlighted at the 

same time the other person made their choice. Every 11 trials (except for the last trial of each 

block pair), participants were given feedback about their cumulative performance on this 

confidence estimation task (as the absolute difference between the estimated confidence and the 

agents’ confidence [see below]).  

Both Phase One and the two halves of Phase Two were preceded by comprehension 

questions regarding which question participants would be asked in the trials to follow (e.g., 

“After observing the other participant's choice, you will be asked a question. Which one?”). 
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Observed Behaviour. In Experiment 1, the agents’ behaviour was determined by 

matching each observer with one of 20 counterpart participants who had previously completed a 

similar version of the experiment. In particular, these participants had completed a staircasing 

procedure (similar to Phase One as described above), followed by four blocks of experimental 

trials of the Gabor discrimination task, with 44 trials each (2 grating orientations [45, 135 

degrees] × 2 grating positions [left, right box] × 11 difficulty levels [from -5 to +5]).  

These data were then used to generate the trials for Experiment 1, where on each trial we 

determined (1) the agent’s accuracy, computed from the probability that the counterpart 

participant would respond correctly at that difficulty level based on a psychometric function fit to 

their performance; (2) the agent’s response time, randomly picked from a gaussian distribution 

with mean and standard deviation based on the counterpart participant’s response times at that 

difficulty level and accuracy (but only including trials with response time between 200ms and 

3000ms, and with these randomly picked values being replaced if they were lower than 200ms); 

and (3) the agent’s confidence, randomly picked from a gaussian distribution with mean and 

standard deviation based on the counterpart participant’s confidence at that difficulty level and 

accuracy. If the counterpart participant had no trials corresponding to that difficulty level and 

accuracy, we determined (2) and (3) based on all other trials. Crucially, these generative 

functions were kept constant for each participant across both agents. 

In Experiments 2 and 3, the agents’ behaviour was determined not from counterpart 

participants, but rather from an algorithm. This was a neural network implemented in Tensorflow 

[58] with three convolutional blocks, each with a max pooling layer, and a fully-connected layer 

on top. The model was trained to discriminate between Gabor patches and noise stimuli, and an 

optimal opacity level was selected such that the model would have an average accuracy between 

60 and 75% (thus matching the staircasing procedure from Experiment 1). On each trial we 

determined (1) the agent’s accuracy, computed from the probability that the model would 

correctly classify a stimulus at that subjective difficulty level based on a psychometric function 

fit to its performance; (2) the agent’s response time, randomly picked from a gaussian 

distribution with a mean of 250ms and a standard deviation of 20ms; and (3) the agent’s 

confidence, randomly picked from a gaussian distribution with mean and standard deviation 

based on the model’s mean accuracy at that difficulty level. Again, these generative functions 

were importantly kept constant for each participant across both agents. 
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Debriefing. At the end of the experiment, participants were asked a series of questions 

regarding their performance (i.e., “How well do you think you did at deciding which box 

contained the grating?”, and “How well do you think you did at guessing the [other 

participant/robot/computer algorithm]’s confidence?”), the other agents’ performance (i.e., “How 

well do you think the [other participant/robot/computer algorithm] did on this task?”), the other 

agents’ trustworthiness (i.e., “How much would you trust the [other participant/robot/computer 

algorithm] if you were working together?”), the artificial agent’s functionality (“How do you 

think the robot/computer algorithm functions? What do you think its capabilities are?”). They 

were also asked about their demographics (age and gender) and experience in the survey (e.g. 

technical difficulties or interruptions). 
 

Experiment 4 

In this experiment, participants watched other agents pick which of two countries had a 

larger (or smaller) population and later rated how confident they thought the other agent was in 

that choice. Each trial thus comprised: (1) a question (“Which of the two countries has a 

larger/smaller population?”), for 500ms; (2) the question and response options, until the other 

agents’ response time (see below); (3) a response highlight, for 500ms; and (4) a confidence 

prompt, until response.  

Each participant completed a total of 176 trials divided into two blocks – one for the 

other person (“another participant who previously completed this task”), and one for the 

computer algorithm (“a computer algorithm that was built and trained to complete this task”) in a 

randomised order, with the respective colour cues also randomised. The debriefing questions 

were the same as in previous experiments, except participants were no longer asked about their 

own performance in the task. 

Observed Behaviour. The trial characteristics and agents’ behaviour were determined by 

matching each observer with one of 10 counterpart participants who had previously completed 

the general knowledge task. For this task, we first selected the 53 countries with populations 

between 25 and 500 million based on the 2021 UN census (https://population.un.org/wpp/). For 

each counterpart participant, we then randomly selected 176 pairs of countries out of all possible 

combinations and asked them to select the one with the smaller or larger population – resulting in 

176 trials (2 questions [“smaller”, “larger” framing] × 2 country positions [smaller, larger on the 

left] × 44 country pairs). Each participant in Experiment 4 was then paired with one of these 10 
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counterpart participants and saw all their 176 trials in a random order, each randomly assigned to 

either the ‘other person’ or the ‘computer algorithm’ block. The trial characteristics (i.e., prompt 

and response options) and observed behaviour (i.e., accuracy, response time, and confidence) 

thus matched the counterpart participants' behaviour exactly – with the only constraint being a 

maximum response time of 12s. 
 

Experiment 5 

In this experiment, participants received advice from other agents in a perceptual 

decision-making task. Phase One was identical to Experiments 1-3, except participants were no 

longer asked about their own confidence. Phase Two was instead adapted such that participants 

first made their own judgments, and later received the advice of another agent, after which they 

had the opportunity to revise their initial choices. Each trial thus comprised: (1) a fixation cross, 

for 500ms; (2) the stimuli, until response; (3) a response highlight, for 500ms; and (4) a screen 

with the advice (e.g., “Your choice: right; Other participant/Computer algorithm's choice: left”) 

and reversal prompt (“Would you like to change your initial choice? Press 'y' for yes, 'n' for 

no.”), until response. On some trials (with 10% probability each), this was followed by (5) a 

catch question (“What was the [other participant/computer algorithm]’s advice on the last 

trial?”), until response; and (6) feedback on this catch question (“Correct!” or “Wrong!”), for 

500ms.  

Each participant completed two blocks of 44 trials each (2 grating orientations [45, 135 

degrees] × 2 grating positions [left, right box] × 11 difficulty levels [from -5 to +5]) in a 

randomised order. Each observer completed four blocks – two with advice from another person 

(“another participant who previously completed this task”), and two with advice from the 

computer algorithm (“a computer algorithm that was built and trained to complete this task”), 

with the respective colour cues also randomised. The accuracy of the agents was determined as 

in Experiment 1, and every 11 trials (except for the last of each block pair), participants received 

feedback on their accuracy based on their revised choices. The debriefing questions were the 

same as in previous experiments, except participants were no longer asked about their accuracy 

in guessing the other agents’ confidence. 
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Statistical Analysis 

All analyses were conducted using R (R Core Team, 2020), RStudio (Rstudio Team, 

2020), and packages lme4 [59], lmerTest [60], and emmeans [61]. 

To examine the impact of observed performance on perceived confidence, we conducted 

linear mixed-effects models of the effect of task difficulty (target opacity from -5 to +5 

[Experiments 1-3] or log ratio of the populations of the two countries [Experiment 4]), accuracy 

(coded as error: -0.5, correct: 0.5), and response times (Experiments 1 and 4 only) on the 

confidence estimates, with counterpart participant (out of 20 participants in Experiment 1; out of 

10 participants in Experiment 4) and observer number as random intercepts. To examine the 

relationship between self-directed metacognition and perceived metacognition, we first 

quantified the effect of trial difficulty on confidence attributions for each observer, agent, and 

accuracy, by fitting separate linear regression models predicting confidence estimates from 

difficulty. From these coefficients, we then operationalised other-directed metacognition as the 

difference between slopes on accurate vs. inaccurate trials, separately for each subject and agent. 

Self-directed metacognition was operationalised as metacognitive efficiency computed via a 

hierarchical regression model (the RHmeta-d model, an extended version of the HMeta-d model; 

see https://github.com/metacoglab/HMeta-d; [62]). 

 To test whether attributions inferences of confidence might vary depending on whether 

they concern another person as opposed to an artificial agent, we added to the first model (with 

difficulty, accuracy, and response times) the agent as a fixed factor (coded as other person: -0.5, 

robot [Experiments 1-2] or algorithm [Experiments 3-4]: 0.5). To further deconstruct this effect, 

we ran an exploratory analysis predicting attributions of confidence from accuracy (interacting 

with difficulty), response time, and agent on the current trial, as well as accuracy (interacting 

with difficulty), response time, and confidence on each the previous five trials, again with 

observer number as a random intercept, and discarding the first 5 trials of each block. Next, we 

checked the consistency of this model across agents by adding agent as an interactive factor to all 

terms. 

To examine learning effects, we conducted linear mixed-effects models of the effect of 

trial epoch (in 11 intervals of 8 trials each), agent (robot vs. person), and block order (robot first 

vs. person first) on the confidence estimates, with observer number as a random intercept. 
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To examine advice-taking behaviour in Experiment 5, we conducted a generalised linear 

mixed-effects model with the logit link of the effect of task difficulty (target opacity from -5 to 

+5) and accuracy in the initial choice (coded as error: -0.5, correct: 0.5) on advice-taking 

behaviour (coded as reject: 0, accept: 1), with counterpart participant (out of 20 participants) and 

observer number as random intercepts. To test whether advice-taking varied depending on 

whether the advice was given by another person as opposed to an artificial agent, we added to 

this model the agent as a fixed factor (coded as other person: -0.5, algorithm: 0.5).  

For all models, in the case of convergence or singularity issues, we reduced the 

complexity of the random effects structure. We followed up on significant effects with post-hoc 

comparisons using Bonferroni corrections. 
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